In [13]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
In [2]:
%matplotlib inline
In [3]:
def medianFilter( data, windowLength ):
if (windowLength < len(data)and data.ndim == 1):
tempret = np.zeros(len(data)-windowLength+1)
if windowLength % 2 ==0:
for c in range(0, len(tempret)):
tempret[c] = np.median( data[ c : c + windowLength +1 ] )
return tempret
else:
for c in range(0, len(tempret)):
tempret[c] = np.median( data[ c : c + windowLength ] )
return tempret
else:
raise ValueError("windowLength must be smaller than len(data) and data must be a 1D array")
In [4]:
def ErrorRate(signal, datafiltered, windowLength):
#calculate the difference between the sine wave and the filtered wave
errorrate = signal-datafiltered
#creating a list and save the error rate (y) and window length (x) in it
error = []
errorrate = np.abs(errorrate)
error.append([windowLength ,np.mean(errorrate)])
#zip the error list
error = zip(*error)
return error
In [5]:
def Errorplot( waveNumber, windowLength ):
data = np.fromfunction( lambda x: np.sin((x-windowLength / 2)/128 * 2 * np.pi * waveNumber), (128 + windowLength / 2, ) )
noise = np.random.normal(0,0.2,(128 + windowLength / 2))
signal = data + noise
datafiltered = medianFilter(signal, windowLength)
signal = signal[ windowLength / 2 : - windowLength ]
datafiltered = datafiltered[ : len(signal) ]
error = ErrorRate(signal,datafiltered,windowLength)
plt.axis([0, y + 1, 0, 1])
plt.xlabel('Window length', fontsize = 20)
plt.ylabel('Error rate', fontsize = 20)
plt.scatter(*error)
In [16]:
fig = plt.figure()
for y in range (0,50,2):
Errorplot(5,y)
In [12]:
pp = PdfPages( 'Error of the median filtered sine waves with white noise and different window lengths.pdf')
pp.savefig(fig)
pp.close()
In [ ]: